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COMMENT 

A comment on ‘The classical limit for the 
Holstein-Primakoff representation in the soliton theory 
of Heisenberg chains’ 

A V Makhankov and V G Makhankov 
Joint Institute for Nuclear Research, PO Box 79, Moscow, USSR 

Received 31 May 1989, in final form 14 February 1990 

Abstract. Skrinjar and co-workers used a Holstein-Primakoff operator method to obtain a 
classical Hamiltonian. It is shown that the same Hamiltonian can be derived directly via 
averaging over spin coherent states, so the former contains no extra information in the limit 
S +  m. 

In the paper by Skrinjar et a1 [l] a classical Hamiltonian was derived via the following 
procedure: bosonisation of the initial quantum Hamiltonian through Holstein- 
Primakoff (HP) operator transformations followed by averaging over the Glauber coher- 
ent states. Performing this procedure, the authors dropped all the terms arising due to 
operators a and a+ ordering (the so-called ‘quantum’ corrections). The thus-constructed 
Hamiltonian is a classical analogue of the quantum one for S+ CQ and can be simply 
obtained through substituting Bose operators by C-numbers. 

The same classical Hamiltonian can be obtained directly via averaging over spin 
coherent states. 

(i) The statement that both the HP and spin coherent states (scs) approaches in the 
classical limit, s --f CQ, give rise to the same result (if one uses the total HP series) is quite 
trivial since (see, e.g., [2], equation (11)) in this limit Glauber cs coincide with the scs 
up to a reparametrisation. The Hamiltonian is given respectively in terms of either = 
2s sin2( 8/2) or lq12 = tan2( 8/2), 8 being the deviation angle of the classical spin (S) from 
the 0 2  axis. These parametrisations are evidently coupled by the formula 

= la12/2s(l - la12/2Y)-l 

which naturally contains a singular point, la[2 = 2, according to their geometric images, 
namely scs are defined by the points of the sphere S 2  and Glauber cs by those of the 
complex plane C.  

So at s = CQ the choice of the procedure to be applied is a matter of taste. 
(ii) When ‘quantum corrections’ of the order of l/s or higher are to be studied in the 

first approach, the HP series must be truncated because this series is asymptotic. In fact, 
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as a result of the operators ordering, the coefficients C, of all the terms (a+),(a). are 
asymptotic series in l/s: 

Cm = E a m n ( l / ~ ) ~ *  
n=O 

For example, one can estimate the magnitude of aln as 

aln = (l /sf i)(n/2es)n-2 

for n S 1 (here n is determined by the power of a non-ordered term (a’a). in the 
expansion of the HP square roots). This means that one can derive quantum corrections 
for finite s by truncating the series at the corresponding term, naturally depending on 
l/s; hence in our example n < 2es. 

In [2] the result of the application of the truncated HP transformations was shown to 
depend centrally on the direction of the transformation quantisation axis, 0 2 ,  in the case 
of the anisotropic Hamiltonian; for example, an incorrect choice of this direction can 
lead not only to an incorrect magnon dispersion, but also to a ‘damaged’ ground state 
of the easy-plane Hamiltonian (see equation (15 ) ,  case ( 2 )  in [2]) where quantum 
corrections appear that are absent for the correct 0 2  axis direction. The corollary of 
the geometric analysis of [2] may be qualitatively given as the following rule: the HP 
transformation quantisation axis (02) should be directed along the ‘easiest’ axis of the 
Hamiltonian. 

(iii) Finally we note that, using the identity 

( IPlY = 21PI2 lPx12 + (P2PZ + P 3 * ) .  
Hamiltonian (6) of [2] exactly coincides with (116) of [ l ]  up to terms of the order of (a(6; 
that is, in both cases 

x = s 2 a ~ { [ 2 ( w )  I P I ~  + 1 ~ ~ 1 2 1 ~  - I P I ~ / ~ )  + +(IPI:)~(~ + 2s + 1 ~ 1 2 / 4 ) ~  

Ultimately, one can conclude that the use of the HP transformation in the limit s * CC 
carries no extra information compared to that contained in the SU(2) averaged (Landau- 
Lifshitz) Hamiltonian which is well studied. 
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